Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Mol Divers ; 26(1): 215-228, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1118253

ABSTRACT

Novel coronavirus disease 2019 (COVID-19) emerges as a serious threat to public health globally. The rapid spreading of COVID-19, caused by severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2), proclaimed the multitude of applied research needed not only to save the human health but also for the environmental safety. As per the recent World Health Organization reports, the novel corona virus may never be wiped out completely from the world. In this connection, the inhibitors already designed against different targets of previous human coronavirus (HCoV) infections will be a great starting point for further optimization. Pinpointing biochemical events censorious to the HCoV lifecycle has provided two proteases: a papain-like protease (PLpro) and a 3C-like protease (3CLpro) enzyme essential for viral replication. In this study, naphthyl derivatives inhibiting PLpro enzyme were subjected to robust molecular modelling approaches to understand different structural fingerprints important for the inhibition. Here, we cover two main aspects such as (a) exploration of naphthyl derivatives by classification QSAR analyses to find important fingerprints that module the SARS-CoV PLpro inhibition and (b) implications of naphthyl derivatives against SARS-CoV-2 PLpro enzyme through detailed ligand-receptor interaction analysis. The modelling insights will help in the speedy design of potent broad spectrum PLpro inhibitors against infectious SARS-CoV and SARS-CoV-2 in the future.


Subject(s)
COVID-19 Drug Treatment , Severe acute respiratory syndrome-related coronavirus , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Drug Discovery , Humans , Papain , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2
2.
Biocatal Agric Biotechnol ; 32: 101924, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1064874

ABSTRACT

The outbreak of COVID-19 created unprecedented strain in the healthcare system. Various research revealed that COVID-19 main protease (Mpro) and human angiotensin-converting enzyme 2 (ACE2) are responsible for viral replication and entry into the human body, respectively. Blocking the activity of these enzymes gives a potential therapeutic target for the COVID-19. The objective of the study was to explore phytochemicals from Ageratina adenophora against SARS-CoV-2 through in-silico studies. In this study, 34 phytochemicals of A. adenophora were docked with Mpro and ACE2 through AutoDock Tools-1.5.6 and their binding affinity was studied. Phytochemicals with higher affinity have been chosen for further molecular dynamics simulations to determine the stability with target protein. Molecular dynamics simulations were studied on GROMACS 5.1.4 version. Furthermore, 5-ß-glucosyl-7-demethoxy-encecalin (5GDE) and 2-oxocadinan-3,6(11)-dien-12,7-olide (BODO) were found to be potential blockers with excellent binding affinity with Mpro and ACE2 than their native inhibitors remdesivir and hydroxychloroquine respectively. The drug likeness study and pharmacokinetics of the phytoconstituents present in A. adenophora provide an excellent support for the lead drug discovery against COVID-19.

3.
Mol Divers ; 25(3): 1827-1838, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1008102

ABSTRACT

Main protease (Mpro) of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) intervenes in the replication and transcription processes of the virus. Hence, it is a lucrative target for anti-viral drug development. In this study, molecular modeling analyses were performed on the structure activity data of recently reported diverse SARS-CoV-2 Mpro inhibitors to understand the structural requirements for higher inhibitory activity. The classification-based quantitative structure-activity relationship (QSAR) models were generated between SARS-CoV-2 Mpro inhibitory activities and different descriptors. Identification of structural fingerprints to increase or decrease in the inhibitory activity was mapped for possible inclusion/exclusion of these fingerprints in the lead optimization process. Challenges in ADME properties of protease inhibitors were also discussed to overcome the problems of oral bioavailability. Further, depending on the modeling results, we have proposed novel as well as potent SARS-CoV-2 Mpro inhibitors.


Subject(s)
Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2/enzymology , Biological Availability , Coronavirus 3C Proteases/chemistry , Models, Molecular , Protease Inhibitors/pharmacokinetics , Protein Conformation , SARS-CoV-2/drug effects , Structure-Activity Relationship
4.
J Biomol Struct Dyn ; 40(7): 2917-2933, 2022 04.
Article in English | MEDLINE | ID: covidwho-915821

ABSTRACT

COVID-19, caused by SARS-CoV-2, is severe respiratory illnesses leading to millions of deaths worldwide in very short span. The high case fatality rate and the lack of medical counter measures emphasize for an urgent quest to develop safe and effective vaccine. Receptor-binding domain (RBD) of spike protein of SARS-CoV-2 binds to the ACE2 receptor on human host cell for the viral attachment and entry, hence considered as a key target to develop vaccines, antibodies and therapeutics. In this study, immunoinformatics approach was employed to design a novel multi-epitope vaccine using RBD of SARS-CoV-2 spike protein. The potential B- and T-cell epitopes were selected from RBD sequence using various bioinformatics tools to design the vaccine construct. The in silico designed multi-epitope vaccine encompasses 146 amino acids with an adjuvant (human beta-defensin-2), which was further computationally evaluated for several parameters including antigenicity, allergenicity and stability. Subsequently, three-dimensional structure of vaccine construct was modelled and then docked with various toll-like receptors. Molecular dynamics (MD) study of docked TLR3-vaccine complex delineated it to be highly stable during simulation time and the stabilization of interaction was majorly contributed by electrostatic energy. The docked complex also showed low deformation and increased rigidity in motion of residues during dynamics. Furthermore, in silico cloning of the multi-epitope vaccine was carried out to generate the plasmid construct for expression in a bacterial system. Altogether, our study suggests that the designed vaccine candidate containing RBD region could provide the specific humoral and cell-mediated immune responses against SARS-CoV-2.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 Vaccines , COVID-19 , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccines, Subunit
SELECTION OF CITATIONS
SEARCH DETAIL